

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Inferencia Estadística

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán

Granada, 2025

Índice

1.	Dist	cribuciones discretas	4
	1.1.	Distribución degenerada	4
		Uniforme discreta	
	1.3.	Distribución de Bernoulli	5
	1.4.	Binomial	5
	1.5.	Distribución Geométrica	6
	1.6.	Binomial Negativa	7
	1.7.	Hipergeométrica	
	1.8.	Poisson	
2.	Distribuciones continuas		
	2.1.	Uniforme continua	8
		Normal	
3.	Aproximaciones		
	-	De Hipergeométrica a Binomial	
		De Binomial a Poisson	
		De Binomial a Normal	
		De Poisson a Normal	
		Corrección por continuidad	
	J.J.	Correction per communate	-0

Este documento ha sido creado con el objetivo de ser un manual de rápida lectura que sirva de recordatorio de las distribuciones más usadas en las asignaturas de EDIP, Probabilidad e Inferencia Estadística; así como de ciertas propiedades útiles a la hora de calcular ciertas probabilidades. En ningún momento pretende ser un manual riguroso de cómo se definen dichas probabilidades, un resumen de las asignaturas, o un recurso relevante de ningún tipo.

1. Distribuciones discretas

1.1. Distribución degenerada

Espacio muestral. $\mathcal{X} = \{c\} \text{ con } c \in \mathbb{R}.$

Función masa de probabilidad.

$$P[X = x] = \begin{cases} 1 & \text{si } x = c \\ 0 & \text{si } x \neq c \end{cases}$$

Función de distribución.

$$F_X(x) = \begin{cases} 0 & \text{si } x < c \\ 1 & \text{si } c \leqslant x \end{cases}$$

Función generatriz de momentos.

$$M_X(t) = e^{tc} \qquad \forall t \in \mathbb{R}$$

Esperanza y varianza.

$$E[X] = c, \qquad Var(X) = 0$$

1.2. Uniforme discreta

$$X \leadsto U(x_1, \dots, x_n), \qquad x_1, \dots, x_n \in \mathbb{R}$$

Espacio muestral. $\mathcal{X} = \{x_1, \dots, x_n\}.$

Función masa de probabilidad.

$$P[X = x] = \begin{cases} 1/n & \text{si } x = x_i, \ i \in \{1, \dots, n\} \\ 0 & \text{si } x \neq x_i, \ \forall i \in \{1, \dots, n\} \end{cases}$$

Función de distribución.

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1 \\ \frac{k}{n} & \text{si } x \in [x_k, x_{k+1}[\\ 1 & \text{si } x_n \le x \end{cases}$$

Función generatriz de momentos.

$$M_X(t) = \frac{1}{n} \sum_{i=1}^n e^{tx_i} \quad \forall t \in \mathbb{R}$$

Esperanza.

$$E[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

1.3. Distribución de Bernoulli

Si X modela el número de éxitos en una ocurrencia de un experimento con probablidad $p \in [0, 1[$ de éxito.

$$X \leadsto B(p), \qquad p \in [0, 1[$$

Espacio muestral. $\mathcal{X} = \{0, 1\}.$

Función masa de probabilidad.

$$P[X = x] = \begin{cases} p & \text{si } x = 1\\ 1 - p & \text{si } x = 0\\ 0 & \text{si } x \notin \{0, 1\} \end{cases} = p^x (1 - p)^{1 - x}$$

Función de distribución.

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - p & \text{si } 0 \le x < 1 \\ 1 & \text{si } 1 \le x \end{cases}$$

Función generatriz de momentos.

$$M_X(t) = 1 + p(e^t - 1) \qquad \forall t \in \mathbb{R}$$

Esperanza y varianza.

$$E[X] = p,$$
 $Var(X) = p(1-p)$

1.4. Binomial

Si X modela el número de éxitos en $n \in \mathbb{N}$ repeticiones de un experimento de Bernoulli con probabilidad $p \in]0,1[$ de éxito.

$$X \leadsto B(n, p), \qquad n \in \mathbb{N}, \quad p \in]0, 1[$$

Notemos que $B(1, p) \equiv B(p)$.

Espacio muestral. $\mathcal{X} = \{0, \dots, n\}.$

Función masa de probabilidad.

$$P[X = x] = \binom{n}{x} p^x (1-p)^{n-x}$$

Función generatriz de momentos.

$$M_X(t) = \left[1 + p(e^t - 1)\right]^n \quad \forall t \in \mathbb{R}$$

Esperanza y varianza.

$$E[X] = np,$$
 $Var(X) = np(1-p)$

Propiedades.

- \blacksquare Sus valores se encuentran tabulados para distintos valores de n y p.
- Si $X \rightsquigarrow B(n,p)$ y Y = n X es la variable que contabiliza el número de fracasos, entonces $Y \rightsquigarrow B(n,1-p)$ y:

$$P[X = x] = P[Y = n - x]$$

1.5. Distribución Geométrica

Si X modela el número de fracasos antes de llegar al primer éxito en un experimento de Bernoulli con probabilidad de éxito $p \in [0, 1[$.

$$X \leadsto G(p), \qquad p \in [0, 1[$$

Espacio muestral. $\mathcal{X} = \mathbb{N} \cup \{0\}$.

Función masa de probabilidad.

$$P[X = x] = (1 - p)^x p$$

Función de distribución.

$$F_X(x) = \begin{cases} 1 - (1-p)^{x+1} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

Función generatriz de momentos.

$$M_X(t) = \frac{p}{1 - (1 - p)e^t}$$
 $\forall t < -\ln(1 - p)$

Esperanza y varianza.

$$E[X] = \frac{1-p}{p}, \qquad Var(X) = \frac{1-p}{p^2}$$

Propiedades. Cumple la propiedad de la falta de memoria:

$$P[X \geqslant h + k \mid X \geqslant h] = P[X \geqslant k] \quad \forall h, k \in \mathcal{X}$$

1.6. Binomial Negativa

Si X modela el número de fracasos antes de llegar al r-ésimo éxito (con $r \in \mathbb{N}$) en varias repeticiones de un experimento de Bernoulli de probabilidad de éxito $p \in [0, 1[$.

$$X \rightsquigarrow BN(r, p), \qquad r \in \mathbb{N}, \quad p \in]0, 1[$$

Notemos que $BN(1, p) \equiv G(p)$.

Espacio muestral. $\mathcal{X} = \mathbb{N} \cup \{0\}$.

Función masa de probabilidad.

$$P[X = x] = {x + r - 1 \choose x} (1 - p)^x p^r$$

Función generatriz de momentos.

$$M_X(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)^r \quad \forall t < -\ln(1 - p)$$

Esperanza y varianza.

$$E[X] = \frac{r(1-p)}{p}, \qquad Var(X) = \frac{r(1-p)}{p^2}$$

1.7. Hipergeométrica

Si X modela el número de individuos de una especie de $N_1 \in \mathbb{N}$ ejemplares en una población de tamaño $N \in \mathbb{N}$ al tomar una muestra de $n \in \mathbb{N}$ individuos.

$$X \rightsquigarrow H(N, N_1, n), \qquad n, N, N_1 \in \mathbb{N}, \quad N_1, n \leq N$$

Espacio muestral. $\mathcal{X} = [\max\{0, n - (N - N_1)\}, \min\{n, N_1\}].$

Función masa de probabilidad.

$$P[X = x] = \frac{\binom{N_1}{x} \binom{N-N_1}{n-x}}{\binom{N}{n}}$$

Esperanza y varianza.

$$E[X] = n \frac{N_1}{N}, \qquad Var(X) = \frac{n(N-n)N_1(N-N_1)}{N^2(N-1)}$$

1.8. Poisson

Si X modela el número de ocurrencias de un determinado suceso durante un periodo de tiempo fijo en una región fija del espacio con una media de $\lambda \in \mathbb{R}^+$ ocurrencias.

$$X \leadsto \mathcal{P}(\lambda), \qquad \lambda \in \mathbb{R}^+$$

Espacio muestral. $\mathcal{X} = \mathbb{N} \cup \{0\}$.

Función masa de probabilidad.

$$P[X = x] = e^{-\lambda} \frac{\lambda^x}{x!}$$

Función generatriz de momentos.

$$M_X(t) = e^{\lambda(e^t - 1)} \qquad \forall t \in \mathbb{R}$$

Esperanza y varianza.

$$E[X] = \lambda = Var(X)$$

Sus valores se encuetran tabulados para distintos valores de λ .

2. Distribuciones continuas

2.1. Uniforme continua

$$X \rightsquigarrow U(a, b), \quad a, b \in \mathbb{R}, \quad a < b$$

Espacio muestral. $\mathcal{X} = [a, b]$

Función masa de probabilidad.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{si } x \notin [a,b] \end{cases}$$

Función de distribución.

$$F_X(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x > b \end{cases}$$

Función generatriz de momentos.

$$M_X(t) = \frac{e^{tb} - e^{ta}}{(b-a)t} \quad \forall t \in \mathbb{R}^*$$

Esperanza.

$$E[X] = \frac{b+a}{2}$$

2.2. Normal

$$X \leadsto \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \quad \sigma^2 \in \mathbb{R}^+$$

Espacio muestral. $\mathcal{X} = \mathbb{R}$.

Función masa de probabilidad.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Función generatriz de momentos.

$$M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}} \qquad \forall t \in \mathbb{R}$$

Esperanza y varianza.

$$E[X] = \mu, \qquad Var(X) = \sigma^2$$

Propiedades.

■ Tipificación. Si $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$, entonces:

$$Z = \frac{X - \mu}{\sigma} \leadsto \mathcal{N}(0, 1)$$

■ Simétrica. Si $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$, entonces:

$$P[X\leqslant \mu-x]=P[X\geqslant \mu+x] \qquad \forall x\in \mathbb{R}$$

• Si $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$, entonces:

$$\mu = E[X] = Me[X] = Mo[X]$$

3. Aproximaciones

3.1. De Hipergeométrica a Binomial

Sea $X \rightsquigarrow H(N, N_1, n)$, si N es más grande que N_1 , si tomamos $p = \frac{N_1}{N}$, tenemos que X puede aproximarse por una distribución binomial B(n, p).

3.2. De Binomial a Poisson

Sea $X \leadsto B(n, p)$, si n es muy grande y p es aproximadamente 0, si tomamos $\lambda = np$, tenemos que X puede aproximarse por $\mathcal{P}(\lambda)$.

3.3. De Binomial a Normal

Sea $X \leadsto B(n, p)$, para n grande y p lejos de 0 o 1, tenemos que X puede aproximarse por una distribución normal $\mathcal{N}(np, np(1-p))$.

3.4. De Poisson a Normal

Sea $X \rightsquigarrow \mathcal{P}(\lambda)$, para λ grande, tenemos que X puede aproximarse por una distribución normal $\mathcal{N}(\lambda,\lambda)$.

3.5. Corrección por continuidad

Debemos tener cuidado al aproximar variables discretas por continuas:

• Para aproximar $P[X = x_i]$ en una variable discreta, lo aproximaremos por:

$$P[x_i - 0.5 \le X \le x_i + 0.5]$$

en la normal.

- Para aproximar $P[X \leq x_i]$, lo aproximaremos por $P[X \leq x_i + 0.5]$.
- Para aproximar $P[X \ge x_i]$, lo aproximaremos por $P[X \ge x_i 0.5]$.